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THE COMPLETE FILLING OF DEAD-END CONICAL CAPILLARIES
WITH LIQUID

G. I. Dovgyallo, N. P. Migun, and P. P. Prokhorenko UDC 532.6

We have observed the complete bilateral filling of dead-end conical capillaries
with liquid, which is accompanied by the rapid dissolving of the air enclosed
within the cavities.

We know that the nature of filling a dead-end capillary depends to a significant degree
on the extent to which the gas enclosed within its cavity is dissolved and diffused into the
liquid [1]. If the gas is poorly dissolved in the liquid, then in capillaries of a length
2, < 107® m and radius R > 0.5 um during the time t < 1 sec a limit filling depth %, is estab-
lished, which is defined by the equality of the capillary pressure and the pressure of the
compressed air. As was demonstrated in [2], for conical capillaries the theoretical and
experimental values of %, are in good agreement. In the case of good solubility and diffu-
sion of the air in the liquid filling the capillaries, the depth of this filling may be con-
siderably greater than %,. A study was undertaken in [3] for the case in which dead-end coni-
cal capillaries are filled with defectoscopic liquids, when the meniscus continues rather
rapidly to shift into the depth of the channel after establishment of the limit depth 2.

Below we describe the results from the study into the filling of dead-end small-dimen-
sion capillaries (with a length of 30 um < %, < 10% um and a radius 0.4 ym < R < 15 um) with
various liquids, thus making it possible to establish that in a number of cases the capil-
lary is filled not only from the inlet side of the channel, but from the top as well. In
this case, at the instant that the capillary is completely filled, the volume of liquid formed
at the top and moving toward the inlet may be greater than half the total volume of liquid
within the capillary.

We used dead-end conical and cylindrical capillaries which had been drawn, by means of
a burner, out of cylindrical glass tubing, immediately prior to the experiment. The capillary
was glued horizontally to the bottom of the vessel which was being filled with the liquid.
A "Biolam-R-16" microscope was used to observe the displacement of the menisci of the liquid
in the capillary. The measurement error amounted to *0.5 um.

The capillaries were filled with distilled water, ethyl alcohol, acetone, and kerosene.
For the first of the three liquids, in each of the conical capillaries we observed the forma-
tion and subsequent growth in a cone of liquid at the apex of the channel (Fig. 1). Figure
2 illustrates the kinetics of the growth in each of the liquid volumes in the capillary. With-
in a specified period of time (4.4 h in Fig. 2) both fluid columns combine and the capillary
is completely filled. As the dimensions of the capillary are reduced, the time required for
the complete filling of the capillary is also shortened. For example, 415 sec are needed
to fill completely a conical capillary with dimensions %4 = 210 pym and R = 4 um with dis-
tilled water. The conical capillaries were filled considerably more quickly with kerosene
than with water, and this was not accompanied by any noticeable growth in the small column
at the apex of the capillary, formed as a consequence of capillary condensation (the volume
of this column amounted to V, < 107%V,, where V, is the total volume of the capillary channel).
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Fig. 1. Filling of a conical dead-endcapillary (R, = 6-107% m,
L, = 4.64+10"% m) with acetone: A) principal liquid column; B)
condensation column.

Fig. 2. Kinetics of filling a conical dead-end capillary (R, =
1.1-107° m, £, = 9.9:107"% m) with distilled water: A) principal
column; B) condensation column. t, 107% sec; 2, 107% m.

Similar investigations performed with cylindrical capillaries of radius R, equal to the
inlet radius of the conical capillary, demonstrated that the capillaries are filled only from
the side of the orifice. In this case, the calculation for the limit depth %, is based on
the formula %o = 202, cos 8/(20cos® + peR), where o is the coefficient of surface tension for
the liquid; 8 is the edge wetting angle; pa is the atmospheric pressure, and this gives us
values which differ from the experimental by no more than 5%. We should note that in a time
t = 15 min the depth to which water penetrates into the dead-end cylindrical capillaries re-
mains constant and equal to %,, while it increases for the ethylene alcohol, acetone, and
kerosene. This demonstrates the differing solubilities and diffusion of the air within the
liquids being studied.

We thus observe a qualitative difference in the extent to which cylindrical and conical
capillaries are filled with water, ethyl alcohol, and acetone, and this qualitative difference
involves the fact that a conical capillary is filled by all three of the liquids from both
sides, whereas a cylindrical capillary is filled only from the inlet side. Apparently this
is associated with the presence of two menisci of different curvatures within the conical
capillary. One of the menisci, as in the case of the cylindrical capillary, is formed on
the side of the inlet to the channel, while the other (as a consequence of capillary condensa-
tion) is formed at the apex of the capillary. The pressure of the saturated vapor near the
second meniscus is lower than in the vicinity of the first; therefore, the liquid vaporizes
from the surface of the meniscus with the smaller curvature and it experiences condensation
at the surface of the other meniscus, which forms the boundary of the liquid cone at the apex
of the capillary.

Since the rate of vaporization at a given temperature in the case of kerosene is consider-
ably lower than for the remaining three liquids under consideration, the vaporization processed
from one of the menisci and the condensation at the other has virtually no effect on the man-
ner in which the conical capillary is filled. An increase in capillary length %, leads to
a reduction in the diffusion flow of the vapor from one meniscus to the other and, correspon-
dingly, to a reduction in the rate of liquid-column growth at the apex of the capillary.

Air is trapped in the channels of both the cylindrical and conical dead-end capillaries
as they are filled with liquid. In the second case, as the capillary is completely filled,
the air is obviously dissolved into the liquid, whereas in the case of the cylindrical capil-
lary, particularly in the case of water, the rate at which it dissolves is considerably lower.
In our opinion, the sharp increase in the rate at which the air is dissolved in the conical
capillary is associated with the process of condensation, when droplets of the condensing
liquid "bind" microvolumes of air and enhance the intensification of the solution process.

Summarizing the above, let us highlight the basic conclusions of this paper. First of
all, dead-end conical capillaries of small dimensions are filled with water, ethyl alcohol,
and acetone from both sides, and here, in a number of cases, the volume of liquid moving from
the apex of the channel to the outlet exceeds the volume of the liquid penetrating into the

396



depth of the channel from the orifice. Secondly, here we encounter intense dissolution of
the air trapped in the channel, and the rate at which this occurs substantially exceeds (in
the case of water, by several orders of magnitude) the speed with which the solution is ac-
complished in a cylindrical capillary.

These results are important in the practice of capillary defectoscopy, pointing the
way to finding optimum conditions for more complete and rapid filling of defects by means
of tracer fluids.
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NUMERICAL MODELING OF NONSTEADY NATURAL CONVECTION IN PRISMATIC CAVITIES

Yu. E. Karyakin UBC 536.25

A finite-difference method is described for the calculation of the two-dimen-
sional nonsteady natural convection in arbitrary areas. This method is used
to investigate convection in a cavity of trapezoidal cross section.

\

One of the fundamental questions that arises in the numerical modeling of the processes
of natural convection in cavities of arbitrary configuration is the choice of the coordinate
system. The utilization of a rectangular Cartesian system involves certain difficulties in
the formulation of the boundary conditions at irregular grid nodes and leads to a loss of
accuracy in the solution. In a number of cases, it is possible to introduce mixed systems
(rectangular Cartesian systems in rectilinear segments, and polar systems in those segments
formed by circles, etc.). It is obvious that not every configuration of this region lends
itself to this approach; moreover, difficulties arise in joining the solutions at the boun-
daries of the subregions.

The most effective coordinate system is the one in which the boundaries of the region
being studied coincide with the coordinate lines. In the general case, this system will be
curvilinear and nonorthogonal. It is precisely systems such as these that are examined in
this paper.

Convection in prismatic cavities of nonrectangular lateral cross section has been in-
vestigated in [1-5]. The two-dimensional natural convection in a cavity whose lateral cross
section is in the form of a parallelogram is examined in [1]. The vertical walls are as-
sumed to be isothermal (hot and cold), and either a linear distribution of temperature or
a condition of thermal insulation is specified for the remaining two parallel walls. The
calculation results are compared with experimental data. The same authors, in [2], solved
the problem in a conjugate formulation.

Convection in a trapezoidal region formed by the arcs of concentric circles and radial
straight lines is examined in [3]. In [4], the authors investigate the problem experimental-
ly. Finally, convection is modeled in [5] in a trapezoidal cavity with thermally insulated
bases and walls that are isothermally inclined at an angle of 45° to the base. The numerical
solution of the problem is found by utilizing variable stream functions, i.e., vorticity in
a range of 102 < Ra < 10° for various orientations of the cavity relative to the vector of
the force of gravity.
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